
Geometry - Unit 2 Review Glossary

This review glossary must be completed and turned in on the day of the unit 2 test.

Definitions:	
1. Vertical Angles:	
2. Supplementary Angles:	
3. Complementary Angles:	
Postulates:	
1. Segment Addition:	
2. Angle Addition:	
3. Transitive:	
4. Reflexive:	
Therman	
Theorems: 1. Vertical Angle Theorem:	
1. Vertical Angle Theorem.	—
2. Right Angle Theorem:	
3. Supplementary Angle Theorem:	
4. Supplementary Theorem 1:	
5. Supplementary Theorem 2:	
6. Supplementary Theorem 3:	
7. Complementary Angle Theorem:	
8. Complementary Theorem 1:	
9. Complementary Theorem 2:	
Intersecting Lines (Hidden Givens): Given: 2 lines that intersect 1. Vertical Angles	
<u>Statement</u> Reason	
(Identify the angles)	
11	
(Use the angles)	

2. Supplementary Angles

Statement	Reason	
(Identify the Angles)		
1	1	

2. (Use the Angles)

2. (4 options)

Segment/Angle Addition Proofs:

_		_
∠	Iddition	Caso:

Given: ____ = ____

Prove: ____=

Basic Proof Steps:

Statement	Reason
1. Part = Part	1. Given
2. Part + Part = Part + Part	2.
3. Whole = Whole	3.

Subtraction Case:

Given: ____ = ____

Prove: ____ = ____

Basic Proof Steps:

Statement 1. Whole = Whole	Reason 1. Given
2. Part + Part = Part	+ Part 2.
3. Part = Part	3.

Conjuntion & Disjunction:

- 1. The statement "X or Y" is true when _____
- 2. The statement "X and Y" is true when

Logical Equivalence:

Given a conditional statement: "If X then Y."

- 1. The *Converse* is _____
- 2. The *Inverse* is _____
- 3. The *Contra-positive* is _____
- 4. The ______ is always Logically Equivalent to the original conditional.